An Efficient Query Mining Framework Using Spatial Hidden Markov Models for Automatic Annotation of Images
نویسنده
چکیده
A novel method for automatic annotation of images is used with keywords from a generic vocabulary of concepts or objects combined with annotation-based retrieval of images. This can be done by using spatial hidden Markov model, in which states represent concepts. The parameters of this model are estimated from a set of manually annotated training images. An image in a large test collection is then automatically annotated with the a posteriori probability of the concepts. This annotation supports content-based search of the image-collection through keywords. The keyword relevance can be constructed using Aggregate Markov Chain (AMC). A stochastic distance between images based on their annotation and the keyword relevance are captured in the AMC is then introduced. Investigation has been made in the Geometric interpretations of the proposed distance and its relation to a clustering in the keyword space. Keywords— Markovian semantic indexing, spatial hidden markov model, image annotation, query mining
منابع مشابه
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملA CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images
Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...
متن کاملFuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملUnsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
Due to the enormous quantity of radar images acquired by satellites and through shuttle missions, there is an evident need for efficient automatic analysis tools. This paper describes unsupervised classification of radar images in the framework of hidden Markov models and generalized mixture estimation. Hidden Markov chain models, applied to a Hilbert–Peano scan of the image, constitute a fast ...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کامل